

Классификация станков шарошечного бурения (СБШ)

Станки шарошечного бурения скважин, получили наибольшее распространение на карьерах в породах практически всех категорий крепости, технические характеристики шарошечных станков приведены в табл. 2, которые получили наибольшее распространение (более 80 % объема буровых работ) для бурения скважин диаметром 190-320 мм и глубиной до 35 м в породах с f = 6÷16. Основные их достоинства — высокая производительность (150-200 м/смену), непрерывность процесса бурения, возможность его автоматизации, комфортные условия труда.

Станки вращательного бурения типа СБШ предназначены для бурения взрывных скважин на открытых горных разработках в сухих и обводненных, монолитных и трещиноватых породах. устанавливается компрессор для комбинированной шнеко-воздушной очистки скважины. Управление станком — из кабины, размещенной в передней части станка.

Все станки шарошечного бурения можно классифицировать на три типоразмера по массе:

Nº	Типоразмер станков	Macca	Твердость горных пород по М.М. Протодьяконову для бурения которых предназначен данный тип станков	Пример	
1	Легкие	30÷50 т	6÷14	2СБШ-200	
2	Средние	55÷75 т	8÷16	СБШ-250МН	
3	Тяжелые	Более 75 т	14÷20	СБШ-320-36	

Таблица 1 – Классификация станков шарошечного бурения по массе

Легкие станки типа 2СБШ-200 предназначены для выполнения работ в карьерах, производительностью более 0,5 млн.м³ в год и для бурения пород с коэффициентом крепости по шкале проф. М.М. Протодьяконова f=6÷14. При бурении этими станками наиболее эффективно применение долот диаметром 215,9 мм, однако в породах небольшой крепости используются также долота диаметром 244,5 мм.

Средние станки, из которых наиболее распространены СБШ-250МН, предназначены для применения на крупных карьерах (годовая производительность более 2,0 млн. м³) для бурения пород практически всех категорий. Наиболее эффективны они в породах с коэффициентом крепости f=8÷16. При бурении используются долота диаметром 244,5 мм, однако применяют также долота диаметром 269,9 мм.

Тяжелые станки (СБШ-320-36) предназначены для применения на очень крупных карьерах (годовая производительность более 5 млн. м³ в год). Наиболее эффективно применение этих станков в породах с коэффициентом крепости f=14÷20. В породах меньшей крепости себестоимость обуривания пород оказывается ниже у средних шарошечных станков. Для этих станков предназначены долота диаметром 320 мм.

Следует отметить, что станки ЗСБШ-200-60 в основном применяются на угольных разрезах, а СБШ-250МН на предприятиях черной и цветной металлургии, в том числе и на карьерах Мурунтау и Кокпатас Навоийского ГМК, карьерах Алмалыкского ГОК Республики Узбекистан.

Из последних образцов российского оборудования следует отметить, что станок среднего типа СБШ-250/270-60 (РД-10), выпускаемый ОАО «Рудгормаш». Он имеет высоковольтное (6000 В) исполнение, большую длину и диаметр штанг и позволяет использовать более мощный компрессор и гусеничный ход.

Технические характеристики шарошечных станков

Показатели	5СБШ-200-36 Барвенковский машзавод (Украина)	3СБШ-200-60 Бузулукский завод	СБШ-250МНА-32 ОАО «Рудгормаш»	СБШ-250/270 /РД-10/ ОАО «Рудгормаш»	СБШ-320-36 ОАО «Рудгормаш»	БТС-150Б, Можайский завод
Диаметр долота, мм	215,9	215,9; 244,5	244,5; 269,9	244,5; 269,9	320	146; 161
Глубина скважины, м, не более	36	60	32	36	36	32
Направление бурения к вертикали, град.	0; 15; 30	0; 15; 30	0; 15; 30	0; 15; 30	0	0; 15; 30
Длина штанги/ход непре- рывной подачи, м	9,6/1	12/1	8/8	12,5/12,5	17,5/17,5	4/4

Осевое усилие, кН, не более	300	300	300	350	600	150
Скорость подачи/подъема бурового снаряда, м/с	0,025/0,516	0,033/0,5	0,017/0,12	0,025/0,63	0,014/0,22	0,3(скорость подъема)
Частота вращения долота, c ⁻¹	0,25-2,5	0,2-2,16	0,2-2,5	0,2-2,5	0-2,1	
Крутящийся момент на вращателе, кН×м	3,2-5,2	6,0	4,2	4,2	8,7	
Подача компрессора, м³/с	0,42	0,42-0,53	0,42-0,53	0,53	0,84	-
Мощность электродвигателей, кВт:						
установленная	410	400	400	430	712	96
вращателя	52	68	68	68	100	60
компрессора	200	200	200	200	2 x 200	-
хода	44	44	44	44	44	-
Тип привода		Высоковольтный электропривод	Низковольтный электропривод	Высоковольтный электропривод	Высоковольтный электропривод	Дизель
Ходовое оборудование	УГ-60	Э-1602	УГ-60М	УГ-70M	ЭГ-400	Трактор Т-130
Скорость передвижения, км/ч	0,77	1,0	0,737	0,84	0,33	4,0
Масса станка, т	66	65	71,5	85	140	26 (без компрессора)

Таблица 2 – Технические характеристики шарошечных станков

Станок 5СБШ-200-36 является модернизированным вариантом выпускавшегося ранее станка 2СБШ-200Н и состоит из ходовой части типа УГ-60, платформы с двумя передними и одним задним гидродомкратами, машинного отделения, кабины, рабочего органа, гидро- и пневмосистем, пылеподавляющей или пылеулавливающей установки, мачты. Кассетирующее устройство крепится впереди мачты.

Станок ЗСБШ-200-60, также создан на базе 2СБШ-200H, имеет патронный привод подачи, аналогичный приводу станка 5СБШ-200-36, однако в последних экземплярах гидропатрон заменен тремя выносными гидроцилиндрами; также имеет измененную конструкцию мачты, причем кассета располагается внутри мачты.

Конструкция ходовой части — малоопорная, экскаваторного типа с литой рамой и встроенными редукторами. Управление двигателем вращения — от тиристорного привода имеется тиристорное управление пуском асинхронных двигателей хода.

Станок СБШ-250МН-32 имеет торцевую схему вращательно-подающего механизма и предназначен для бурения скважин диаметром 250 мм с осевым усилием 300 кН глубиной до 32 м в породах f=8÷14. Горизонтирование станка осуществляется тремя домкратами. К основным конструктивным особенностям станка относятся: наличие верхнего привода вращения бурового става; непрерывная подача бурового става на длину 8 м; воздушно-водяная система пылеподавления; высокий уровень механизации вспомогательных операций при сборке-разборке бурового става.

Станок СБШ-320-36 предназначен для бурения скважин диаметром 320 мм глубиной до 36 м в породах с f=18. На раме расположено машинное отделение, в передней части которого размещены электрические шкафы управления, маслонасосная станция, блоки гидроаппаратуры, водяные насосы и другое вспомогательное оборудование, в задней части — два винтовых компрессора, а в нише хвостовой части станка — два кабельных барабана. Станок снабжен гусеничным ходом с индивидуальным приводом на каждую гусеницу.

Станок СБШ-250МНР предназначен для шарошечного бурения вертикальных взрывных скважин и последующего термического расширения их заряжаемой части в породах и рудах (f>12). В качестве рабочего органа используют терморасширитель с огнеструйной горелкой воздушно-керосинового типа. Удлиненная мачта позволяет бурить скважины без наращивания штанг на уступах высотой до 17 м.

Из последних образцов российского оборудования следует отметить, что станок среднего типа СБШ-250/270-60 (РД-10), выпускаемый ОАО «Рудгормаш». Он имеет высоковольтное (6000 В) исполнение, большую длину и диаметр штанг и позволяет использовать более мощный компрессор и гусеничный ход.

Данная модель станка является весьма перспективной, в которой воплощены последние разработки и современные тенденции развития бурового оборудования, направленные на гидрофикацию приводов основных узлов, что характерно для зарубежных производителей станков (мачта коробчатого сечения из квадратного профиля с открытой передней гранью, реечная подача, разделение кабины и машинного отделения и др).